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ANATYSTS OF STRESSES IN THE PLASTIC RANGE AROUND
A CIRCULAR HOIE IN A PLATE SUBJECTED
TO UNIAXTAT. TENSION

By Bernard Budiansky and Robert J. Vidensek
SUMMARY

An spproximate theoretical solution is presented for the stresses
in the plastic range around a circular hole in an infinite sheet sub-
Jjected to uniexisl tension. The solution is based on the simple defor-
mation theory of plasticity and is found by application of a variational
principle in conjunction with the Rayleigh-Ritz procedure and the use of
a high-speed computing machine (SEAC). Numerical results are obtained
for four different materials, which are characterized by four distinct
uniaxial stress-strain curves. The results for stress concentration
factor in the plastic range are compared@ with those obtained from a for-
mula due to Stowell.

INTRODUCTTION

The stress distributions that occur around structural discontinuities
such as holes and notches have been found theoretically for a wide variety
of cases on the basis of the theory of elasticity. An Ilmportant problem
is the corresponding determination of such stress distributions for
strain-hardening materials when the stresses exceed the elastic limit.

A major obstacle to such an undertaking lies in the fact that basic
stress-strain relations in the plastic range have not yet been definitely
established for strain-hardening materials; in addition, even after the
choice of a particular stress-strain relation is made, the concomitant
nonlinear system of equations governing the stress distribution may
generally be expected to defy exact analytical solution.

The present paper considers the problem of finding the stresses in
the plastic range around a circular hole in an infinite plate subjected
to uniaxial tension at infinity (fig. 1). The plate material is assumed
to obey the stress-strain relations of the simple deformation theory of
plasticity, and an approximate solution is effected by application of an
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sppropriate variabtional principle in conjunction with the Rayleigh-Ritz
procedure and the use of a high-speed computing machine, the Standards'
Eastern Automatic Computer (SEAC) of the National Bureau of Standards.
Mumerical results are given for four different materials, each of which
is characterized by a particular uniaxial stress-strain curve.

The results found for the stress concentration factor in the plastic
range are compared with those predicted by a simple formulse suggested by
Stowell in 1950 (ref. 1).

SYMBOLS
Ops Ogs Tpg radial, circumferential, and shear stresses,
respectively
0,.°, 9%, Trg° radial, circumferential, and shear stresses corre-
sponding to elastic solution, respectively
Ops 0gs Trg correction stresses (for example, 0p = 0y - 07°)
1i/2
Je effective stress, <0r2 + 092 - Op0g + 3Tr62) /

1/2

o = [ + @ - w2

- AP - - - o\/2

O = <0’r2 + 0'92 - OrUe + 51—1‘92

O uniaxial stress st infinity

oy nominal yield stress in Ramberg-Osgood equation
(see eq. (3))

A =' 0’00/0'1

X stress concentration factor

€rs €gs 710 radial, circumferential, and shear strains,
respectively

ur, ug radial end circumferential displacements,

respectively
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uro, ueo radial and circumferential displacements corresponding
to elastic solution, respectively

U,y Ug correction displacements (for exsmple, Ty = up - up®)

P stress function for o 3 86’ and ;re

v nondimensional stress function (cp = a201¢>

8pq coefficient in expansion for Y (see eq. (14))

a hole radius (sce fig. 1)

T radial coordinate (see fig. 1)

9 angular coordinate (see fig. 1)

P nondimensional radial coordinate (p = r/a)

n=1/e

E Young's modulus

Eg . secant modulus

G shear modulus

v Poisson's ratio (elastic)

n exponent in Ramberg-Osgood equation (eq. (3))

W stress-energy density (defined by eq. (17))

F complementary energy

Frmod modified complementary energy

o nondimensional modified complementary energy

i integers 1, 2, . . . 10

J integers 0, 1, 2, . . . 10

M, N integers

P, q integers 0, 1, 2,
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a, B, 7 integers 1, 2

BB Kronecker delta (equals 1 if « = B, equals O if
@ # B)

Superscripts:

E elastic part

P plastic part

STRESS~STRATN RELATIONS

On the basis of the simple deformation theory of plasticlty, the
stress components 0,, 0g, and Tpg (see fig. 1) are related to the

corresponding strain components €. €gs and 7rg 88 follows:
=21 - L -1 -1
er =g (Ur vce) + (Es E) GII. 5 0’9>

_ 1 - 1 _1 -1
Ge = E (Ue V0r> + (Es E) Ge > Ur>

(1)

N~

Soy

_1 11\ =
Tre =G Tro * 5(@ - ﬁ)Tre

s

In equations (1), the quantity Eg 1is defined as the secant modulus of

the uniaxial stress-strain curve at an effective value of stress oe
given by

1/2
% = (02 + 062 ~ ;05 + 575o? / (2)

The first term in each of equations (1) constitutes the elastic
part of the strain; the second term, in each case, is the plastic part.
In keeping with the usual assumptions of plene stress, normal and
shearing stresses in the direction of the plate thickness are considered
to be negligibly small.

The simple stress-strain relations (1) should, strictly speeking,
be used only if 0Je 18 continually increasing -~ that is, as long as no
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unloading tekes place. However, it will be assumed in the ensuing
calculations that equations (1) apply regardless of whether or not Oe

decreases; the extent to which the consequent solution actually exhibits
unloading will be examined a posteriori.

In order to afford a complete analytical specification of the stress-
strain law, an analytical formulation of the uniaxial stress-strain rela-
tion (which determines Eg) is desirable. One such formulation that

appears to be useful for a variety of structural materials has been pro-
posed by Ramberg and Osgood (ref. 2) and is given by

¢ = %l:l . ;G_Dn’l] (3)

where E 1is the elastic modulus, oy is the value of stress at which

the secant modulus Eg i1is equal to O0.7E, and n is a parameter chosen
to provide the best f£it to the stress-strain curve of the actual material
under consideration. Alternatively, o) may also be considered as an

arbitrary parameter that may be adjusted to provide a good overall fit
to the actual stress-straln curve, and the requirement that it specify
the actual stress at which ES/E = 0.7 may accordingly be dropped.

Equation (3) may be recast into the form

()543

Figure 2 shows plots of o/0; against Ee/o; for values of n = 3, 5,

9, 19, and «w. The gently sloping stress-strain curve for n =3 is
typical of some stainless steels; the sharply breaking curve for n = 19
is similar to the stress-strain curves of some aluminum alloys.

With the use of equation (3), the secant modulus Xg needed in the

stress-strain relations (egs. (1)) may be written in terms of the effec-
tive stress o, as

Eg = (k)
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ANALYSTS

Elastic Solution

Under the action of an applied stress d, at infinity, the elastic
stress distribution in the plate shown in figure 1 is given by (ref. 3,
p- 80) .

G,
Uro=_2°31__l_+(1__lt+-3—>cos 20

02 02 ol
g0 = L 14+ -2 - (1 4+ Dlcos 26 > (5)
2 02 plt
o
Tfeo = - 21 4 2 _3 sin 28
2 p2 )

where p = r/a.

At the hole (p = 1), the maximum value of oy occurs at 6 = -1-;-5

and 1s equal to 30,. Thus, in the elastic range, the stress concentra-
tion factor is 3.

Assumed Form of Plastic Solution

The plastic stress distribution may be written in the form
3\

oy = 0g° + T f (6)
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and attention may be directed to the determination of the "correction"
stresses Or, Og, and Tpg which, when added to the stresses corresponding

to the elastic solution, yleld the stress distribution in the plastic range.
Since the correction stresses must be self-equilibrating, they may be
expressed in terms of a stress function o¢(r,8) as

5o1%, 1%
Tor 1232
- _ 9 -
Gy = T
® " a2 f
2
'+G=.;L_§°;_;M_
T 23 rorde
y,

By letting o = a?clw(p,e) the correction stresses, normalized with
respect to the nominal yield stress 0y, may be conveniently expressed

in terms of ¢ as

Or 19 1 QEH

—_— = - 4+ —

g, P 5% p2 ae2

G 2

0_9=5_g ) (8)
1 o

/

It will be assumed that, at each value of the radial coordinate p, the
function VY may be expressed as a Fourler series; thus,
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¥ =2 £4(p) cos 290 (9)
q=0

where the Fourier coefficients fq are functions of p. Since the
correction stress must leave the boundary of the circular hole stress-
free, it is necessary that Op = Tpg = O at p = 1. Hence, it follows
from equations (8) and (9) that

£'(1) =0 (10)

fq(l) = fq'(l) =0 (q = 1)2)5)"') (11)

Furthermore, the correction stresses must all vanish at infinity, and,
indeed, they will be assumed to vanish as 1/p2. The plausibility of this
assumption stems, in part, from an examination of the elastic solution
(see eqgs. (5)), which shows that the effect of the hole in perturbing

the uniform stress field drops off as 1/p2 in the elastic case. It
seems reasonable to expect that plasticity will not introduce stronger
perturbation of the uniform stress state. Combining this assumption with
equations (10) and (11) leads, then, to the following assumed expressions
as approximations for the functions fq(p):

M
£o'(p) = -(l - %) Zo ayp Pt (12)
p:

£,(p) = (1 12% P (g=1,2 ) (13)
g\P —( "E‘) p=08’pq_p q=1,2,5,...

where the coefficlents apq are, of course, as yet unknown; the stress
function may thus be approximated by
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o e b S

=0

M=

apgp~Pcos 298 (14)
1

9

where M and N are integers to be chosen as large as 1s practicable.
If the substitution 1 = 1/p is made, equation (14) becomes

=f (1- 1) Z apon®tan + (1 - m)? Z Z apqiPcos 206 (15)

p=0 g=1

In terms of derivatives with respect to 1, the relatiomship between
stress and stress function is

Lo g3 oY, 2 __E
oy on de°

_..n)-l-._q{.'.zn}_ﬂ

(16)
an2 on }

Tre _ 2l+n3_L
o 38 36 3

/

Solution of the problem (for a given material stress-strain curve)
now depends upon the determination of the coefficients apq for given

values of the applied stress at infinity. This determination is made
possible through the use of the variational principle to be discussed
in the next section.

Variational Principle
Variational principles governing the solutions to boundary-value

problems associated with a variety of stress-strain laws of plasticity
have been reviewed comprehensively in reference 4. These variational
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principles, however, are specifically limited in epplicebility to problems
involving finite domains; for this reason, it will be necessary to introduce
a new modified variational principle for the determination of stresses in
the infinite two-dimensional region presently considered. A similar sltua-
tion in fluid dynamics was encountered by Chi-Teh Wang (refs. 5 and 6) who
found it necessary to modify Bateman's variational principle in order to
render it epplicable to compressible-flow problems in infinite domains.

For deformation-type theories, the variational principles for the
stresses involve the so-called stress-energy density, which in the plane
stress case can be writiten as

Or, 00, Ty
w(op,08,Trg) = (ep doy + eg dog + 7pg dTpg) (17
0]

where the straeins are considered as functions of the stresses; these
functions are assumed to be such that the line integral in equation (17)
is path independent. (This condition is satisfied by all deformation
theories that have been seriously considered, including the simple defor-
mation theory.) For a finite two-dimensional domein A having stresses
prescribed over its boundaries, the complementary energy is defined as

F=wadA ‘ (18)

The variational principle (ref. U4) states that, when F is written for
the true solution to the boundary-value problem,

&F = 0 (19)

for all stress variations &op, 80y, and BTpg that satisfy equilibrium

and provide no stress resultants on the boundaries. This principle is
readily verified by noticing that, by the use of the definition (17)
for w,

BF = f (er B0y + €g B0g + 7pg BTg)dA (20)
A
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But since the strains are compatible and the stress variations satisfy
equilibrium and provide zero boundary tractions, the principle of virtual
work implies that the right-hand side of equation (20) must vanish.
Furthermore, if &% > 0 for all stress variations, &2F > 0, and hence
F is a relative minimum. :

Now suppose that the external boundary of A recedes to infinity in
all directions, and that the boundary-value problem specifies a constant
stress state at infinity and vanishing

tractions along all internal boundaries. //’_\\\
Define AR as the area between a large 7/ N
circle Cr of radius R and the inter- ,/ <:::> \\

nal boundaries. (See sketch.) Then, |

1
by the principle of virtual work, \\ f )
/

\ 0 /

5 f w dA = f (ur Bop + ug &7 4)ds AN
AR Cr

where u, and ug are the true displacements in the radial and circum-
ferential directions. Hence

5 fAR W dA - j;R(urcrr + ueTre)ds =0 (21)

for all admissible stress variations. Unfortunately, this variational
equation is not of much practical use as a tool for finding the stresses
because, for any finite value of R, the displacements u,. and ug are

not known a priori. Furthermore, it is useless to let R become infinite
inasmuch as the quantity 1n the brackets would then become infinite.

The situation may be remedied by subtracting from the bracketed
quantity of equation (21) certain integrals that are independent of the
plastic solution and that keep the expression finite as R becomes
infinite. Thus, if the stresses of the solution to the elastic problem
are denoted by op°, 0g°, and T.g°, the modified equation may be

written as

] {fAR [V(“r:o'e:"'re) - V(UrO:UGO:Treo)]dA JCRElr(Ur - ar°) + ug(Tre - Treo)] dﬂ} =0 (22)

— ey —— e —
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Equation (22) is valid for any given value of R Dbecause the extra
quantities in this equation, which depend only on the elastic solution,
contribute nothing to the variation. If the differences between the
stresses of the elastic and plastic solution are assumed to vanish at
infinity as 1/r2 or faster, it can be shown that

Fpog = Mm fAR[w(cr,ce,Tra) - W(Ur°,de°,'rre°):|dﬂ - LR E’r(% - 0x9) + ug(Trg - Tre°;_\d5

R—o

(23)

is finite. Furthermore, there is no difficulty in evaluating the line
integrel in equation (23) since the displecements at infinity must be
asymptotically equivalent to the easily calculable displacements thet
would occur for the infinite plate without any interior holes. Thus,
since equation (22) is valid for all values of R, it follows that

8Fmod = O for all admissible stress varistions, where now the conditions
of admissibility must be extended to permit only stress variations that
vanish at infinity as l/r2 or faster.

It is now possible to apply the direct methods of the variational
calculus (for example, the Rayleigh-Ritz method) by substituting into
equation (23) expressions for the stresses that contain undetermined
parameters and then applying the condition that ¥Fpoq must be stationary
with respect to these parameters. If it is known that 82w > 0 for all
stress variations, the stronger condition that Fpoq be a minimum with
respect to the parameters can be used; this condition for a relative
minimm is actually satisfied by the simple deformstion theory (ref. 4).

The general expression for Fp,g &iven by equation (23) can be

simplified; the reduction is most economically performed with the help
of tensor notation and is given in appendix A. The result is

Fmod = 1lim f 'WP(O'r,O'e,Tre) - WP(UrO,O'eO,Treo) +
R—>» AR

é&ﬁara + 02 - OplOg + 3Tpg2)| AA - jf (Gp8p + UgTpg)ds (2k)
Cr
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where

WP(O'r,O'e,Tre) = f

Ur’ce’Tre(
0

erPdcrr + eeP dog + ')'I-ePdTre)

— o
Uy = Up - Up

ug

l
&
&

Here uro and ug® denote the displacements associated with the elastic

_solution to the problem. The superscript P on the strains denotes the
plastic part; that is, erP, eeP, and 71.91? are given by the second
term in each of equations (1), respectively.

The expression for Fp,3 can now be reduced to the form appropriate

to the present hole problem and the simple deformation theory. From
equation (2) it follows that

d(0e®) = 20p doy + 209 dog - O Agg - Oy Aoy + 6Tpg ATyg

or

1 1
ge doe = (Ur -3 09\) dop + (09 -3 0'I> dog + 3Tyg dTrg (25)

Hence, by equations (1) and (2),

P Pag. P Y O N
Gr d.Gr + Ge dUe + 7o ‘dTre = <ﬁ; - E)Ue d.O'e

so that, with the use of equation (4) for Eg,

P P P 3 (de
€Epr dO'r + €9 d.Ue + 7ro d.Tre = "%‘(Fi') . E— dae
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Consequently,
g, n-1
e (4] g,
VP(O'O'T)=f 2(% -£ dg
r’-02'ro o 7\01 = e
whence

P 5 6\ oe” 6
wE(or,00,Tre) = §(£f;jiy<%1> = (26)

The line integral in equation (22) may be evaluated by noting that,
very far from the hole, to within a rigid-body displacement,

Uy ~ X

~ - Eﬂ-l-_:]: l ...:I;(_y
W IE T2 Fs(0w) EJ

where x and y are rectangular coordinates in the direction of, and
perpendicular to, Ow.

Hence,



NACA TN 3542 15

or

S
n-1
ﬁr ~ %(%) (i’— + E cos 26> 0“""

n-1
Tg ~ %(g:'-) (J-B_L sin 29) O

With the substitution of equations (27) and (26) into equation (24),
the modified complementary energy expression appropriate to the present
problem may be written nondimensionally

| (zn

/

n+1 )

. 1l o _
mod. Oe 6 Oe Oe
- — as -
f f (n+l)<o‘l> 7(n + 1) oy +<cr> P

1

n N ax P -
lim 2D 02 E?-(l + 3 cos 28) - 3 Tx8) gin 26a0 (28)
p—sw W J g il oy

where A = 0,/0; and p = r/a.

The quantities o, 0c”, and Oe are given by equation (2) with
the use, respectively, of the actual stress components, the stress com-
ponents from the elastic solutions, and the correction stress components.
The final and most convenient form of the energy expression is obtained
from equation (28) by using the fact that the integration need be carried
out only over one quadrant of the plate and by introducing the substitu-
tion 7 = 1/p. Then, the function to be minimized becomes

2
1 n/2 6 Je n+l 6 /Ue e \| 1
=fo j; 7(n+1)<§> BRIl ) +(’a‘>’3dﬂde‘

1/41

n :t/2 = T
SN c—r(1+300526)—33‘—9—sin29-£2d6 (29)
1—s0 % Jo o oy 1
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It is of interest to note that this expression and, hence, the solu-
tion for the stresses do not depend on the elastic Poisson's ratio.

Application of Rayleigh-Ritz Procedure

Analytical minimization.- An approximate analytical solution for
the stress distribution could, in principle, be effected by retaining a
specified number of undetermined coefficients in the stress function (15),
calculating the corresponding forms of the correction stress from equa-
tions (16), substituting in the expression (29) for &, and then minimizing
¢ with respect to the coefficients. Such a process would then yield a
finite number of simultaneous nonlinear slgebraic equations for the unknown
coefficients. In practice, the analytical evaluation of ¢ constitutes a
very leborious calculation because of the (n + 1) powers of Oa that

appear. The work required increases very sharply with increasing values
of n and with increases in the number of undetermined coefficients that
are taken into account. Consequently, an analytical solution was carried
out only for the case n = 3 — corresponding to a gently sloping stress-
strain curve — and with only three undetermined coefficients.

The contribution to ¢ due to the term containing the single inte-
gration with respect to 0 in equation (29) is very easily evaluated,
and turns out to be (see appendix B)

BZgnG-OO + 33,01> | (30)

This result is valid regardless of how many coefficients 8pq ore taken

into account and for all values of n. The calculation of the double

integral for n = 3 and with only 8ags 8012 and &,y considered in

the expression (15) for the stress function was, on the other hand, tedious

and time consuming. The three simultaneous nonlinear equations obtained
o0 o0 3%

%agy Oagy  deqg
thus found were solved (by successive approximation) for various values
of N = 0,/0,, with the results shown in table I.

= 0 applied to the form of ¢

from the conditions

The primary use made of these results was to gain insight into the
range of values assumed by the coefficients, and, because of the great
labor involved, the analytical approach was abandoned in favor of the
numerical process to be described in the following section.
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Numerical minimization.- The essential idea involved in the numeri-
cal minimization of ¢ is its numerical evaluation for systematically
varied sets of coefficients 8pq that lead (monotonically) to lower and

lower values of ¢. The numerical evaluation of the double integral in
the expression for ¢ was made as follows: The rectangular domain
0<n<1 and 056 Sx/2 in the 1,0 plane was divided into a

10 X 10 grid. With the integrand denoted by 1I(n,0), the double integral
was then approximated by two successive applications of Simpson's rule as
follows:

1 Ax/2 n/2 10
=1 i nj
/; fo I(n,0)dn a8 = 30/; 1(0,0)d0 + —e— 18 5 2 Z Z= s I(lo 20)

(31)

where, according to Simpson's rule, S5=1, 81 =14, Sp=12, Sz=15k.

87 = L, sg=2, Sg = 4, and S35 = 1. Special treatment was needed at

N = 0, since direct numerical evaluation of the integrand is not feasible
/2 :

there. Fortunately, the integral \/ﬁ I1(0,0)d® can be evaluated

analytically, and turns out to be (see appendix B)

n/2 3D
j; 1(0,0)de = ?6—("2300 - 6’“01 + 28,4+ 3all) (32)
This result is valid no matter how many coefficients apq are taken into

sccount. Combining equations (30), (31), and (32) gives the final expres-
sion for numerical evaluation:

10 10

= i wd
¢ 180O g. ;Z °1 (10 20) 560 (588' + l7ll'ao]_ + 28,7 33'11) (33)

With the use of expression (33) for ¢, approximate numerical minimiza-
tion was performed on the SEAC. The work was limited to the determination
of only the four coefficients aOO’ alO’ 841> and 8qq- A detailed

description of the numerical procedure — essentially an application of a
"method of steepest descent” — is given in appendix C. As has been stated,
the method involves the repeated calculation of ¢ for systematically
varied sets of the coefficients 8pq that lead to a minimum value of ¢.

Results were found for four stress-strain curves, described by values of
3, 5, 9, and 19 for the Ramberg-Osgood parameter n; for each n, several
values of applied stress, as specified by A = om/ol, were considered.
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The results found for the coefficlents apq are given in cable II. Con-

vergence to the final results was generally slow; from 12 to 35 cycles of
iteration were made for various values of A. In each case, the final
values of the coefficients agreed with those of several preceding itera-
tions to within approximately 1 percent of the lergest coefficient, but
there was no absolute guarantee that many additional iterations would
not have changed the results appreciably.

RESULTS AND DISCUSSION

Stress doncentra‘tion Factor

Once the values of the coefficients Byq 8re known, the stress state

at any point can be found from equations (5), (6), and (16). In terms of
the four coefficients considered, the stresses are then given by

7
or _ %[(1 - n2) + (l - 1&112 + 51‘4) cos ZB:I- na[(l - n)a.oo + ('q - qz)alo +

2
s

(4 - 100 + 61]2)8.01 cos 20 + (51] - 121]2 + 7113)311 cos 29:]

%% _—.%[(1 +12) = (1 + 3n*) cos 29] + 1]2[(1 - 2n)ag + (20 - 3"2)310 -

r (34)

(14-1] - 61]2)8.01 cos 20 + (21] - 12712 + 12713)&11 cos 26]

= =--7é‘-(1 + 21]2 - 31]1") sin 20 - 112[(2 ~ 8y + 6112)&01 sin 20 +

(h-'q - 12712 + 8n3)all sin 29]

o

Of perhaps the greatest Interest is the value of the stress concentration
factor determined by the ratio of oe(l,ﬁ/a) to the applied stress. This
factor is found to be
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8.00 + 2&01 + ajo + 28.1_1

K=3 - -

(35)

Figure 3 shows the varlation of the stress concentration factor with
A= om/cl for each of the stress-strain curves considered. Also

included 1in the figure is a 1limiting curve for the case n = o, cor-
responding to an elastic—ideally plastic material (fig. 2). This curve
was obtained simply by assuming that the meximm stress at the hole is

1

50, until o, reaches 361, and thereafter remains at the value 05
thus, for %Ol < 0Op < 0y (or for %-< A < 1), the stress concentration

factor is K = 3/%. Values of A greater than 1 are meaningless for
this cese Inasmuch as the applied stress can never exceed Oy« It is

interesting to note that the curves calculated on SEAC for n =3, 5, 9,
and 19, as well as the limiting curve for n = », all intersect in a very
small interval around A = O.k.

It is of particular interest to compare these results for stress
concentration factors with those obtained from the following formula
suggested by Stowell (ref. 1):

E_. (Ko,
K=1+2M

6
o (56)

For the Ramberg-0sgood stress-strain curve, Stowell's formula for K

becomes
n-1
K=l+2(l+éﬁ ) (37)

1+ ,37,(:1-17@-1

The variation of K with A = Um/dl obtained from equation (37) is

given in figure 4 for each of the four stress-strain curves considered.
The results of the present theoretical calculations and, in addition,
the results obtained from the three-coefficient analytical solution for
n = 3 are shown for comparison.

It is seen from figure 4 that the agreement of the present results
with those obtained from Stowell's formule 18 only falr. Perhaps a more
meaningful comparison is afforded by figure 5, which shows the variation
with o0,/01 of the maximum stress itself (nondimensionalized with the
stress cl) for each of the four cases. It is interesting to note that

a8 n Iincreases a tendency for the curve to develop an inflection grows
and, indeed, this inflection becomes so distinct at n =19 as to indi-
cate a very small reductlon of stress with increasing load, at about




20 NACA TN 3542

0,/07 = 0.7- Such & reduction of stress, or "unloading," really invali-

dates the use of the stress-strain relations (1) but the magnitude of the
unloading is so small (at least at the point of the plate presently con-
sidered) as to be probably not too important.

The results for the stress plotted according to Stowell's formule
deviate from that of the present theory by amounts varying up to about
15 percent. It is impossible, however, to ascribe much significance to
any agreement, or the lack thereof, between the two sets of results.
While the present results stem from an approximate solution thet satisfies
equilibrium of stress exactly and compatlibility of strain approximately,
Stowell's formula is based on a treatment that ignores compatibility
entirely and satisfies equilibrium in some average fashion over the entire
region exterior to the hole. The present analysis clearly has a much more
rigorous theoretical foundation, but its actual physical validity is not
known inasmuch as it is based on an arbitrary plasticity stress-strain
law as well as being approximate, even within the framework of the assumed
theory. On the other hand, in reference 1 Stowell exhibits good agree-
ment between the prediction of his formula and experimental results for
stress concentration factors obtained by Griffith (ref. T7) for 2024-T
(formerly 24S-T) aluminum elloy. A careful study of the stress-strain
curve measured by Griffith for his specimen reveals that it cannot be
described satisfactorily by a Ramberg-Osgood equation; consequently, no
meaningful camparison between Griffith's results and the present analysis
can be made. Certainly, Stowell's formula has much to recommend it by
virtue of its simplicity; but the ultimate assessment of its validity,
as well as thet of the present analysis, must come from experiments on a
variety of materials having both gently sloping and sharply breaking
stress-strain curves.

Stress Distribution

Distributions of stress have been computed fram equetions (34) and
are shown in figure 6 for the case n =9 and Um/dl = 0.9; these dis-

tributions are typical of those that occur for other cases in which sub-
stantial plastic flow occurs in the neighborhood of the hole. The sepa-
rate sketches in figure 6 show the variations of the stress components
along three radial lines: © = ﬂ/2 (the location of maximum tension at the
hole), =n/k, and 6 = 0. For comparison, the elastic stress distribu-
tions are also shown. The largest deviations between the two occur, as is
to be expected, where the elastically computed stresses are highest. In
addition, a rather striking difference between the elastic and plastic
distributions of the circumferential stress oy occurs at 6 = ﬁ/h;

in the plastic case, the circumferential stress rises to a maximum and
then drops, in contrast to the monotonic decrease in the elastic case.
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The variation of o, as given by equations (2) and (34), with

increasing aspplied stress at infinity has been subjected to numerical
study in order to determine whether the solution indicates unloading any-
vhere in the sheet. The very slight amount of unloading that occurs at
the hole (where og = 0g) for n =19 and O =xn/2 has already been

noted in figure 5; spot calculations of o, elsewhere in the sheet fail
to Indicate unloading except at values of O, Wwell below oy, for which
the behavior 1s still essentially elastic.

CONCILUDING REMARKS

The theoretical solution presented for the stresses in the plastic
range around & circulaer hole in a plate subjected to uniaxial tension is
very far from a final answer 4o the problem considered. The solution is
based on a stress-strain relation of questionable validity; and it is only
approximate, even within the framework of the postulated theory. However,
it is felt that the solution has intrinsic theoretical interest since,
except for problems with radial symmetry, little attention has hitherto
been directed at plane stress problems for strain-hardening materials.
Further, the solution fulfills to a limited extent the promise of varia-
tional principles as a useful tool in the solution of boundary-value
problems of plasticity. On the negative side of the ledger is the fact
that the numerical minimization process used in conjunction with the
variational principle is not very efficient. Extension of the present
approach to include many more degrees of freedom would sorely tax the
capacity of even the largest high-speed computing machine presently
available, and would probably require prohibitive amounts of machine
time. The development of more efficient numerical minimizetion proce-
dures would be a boon to the use of the variational approach to nonlinear
problems of the kind considered in this paper.

Of greast interest would be another treatment of the problem via
the simple flow, or incremental, theory of plasticity, and the subsequent
comparison with the present results. Although the flow and deformation
theories may differ substantially from one another for arbitrary stress
paths, little is known about the effect of such deviations on the stress
distributions that would be predicted by the two theories in problems
such as the presently considered one.

Langley Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,

langley Field, Va., August 16, 1955.




22 NACA TN 3542

APPENDIX A
SIMPLIFICATION OF MODIFIED COMPLEMENTARY ENERGY EXPRESSION

In tensor notation, with the use of the summation conventlon, +the
complementary energy density for plane stress may be written

o
of
W(qua) = fo €ap d9g

where the indices take on only the values 1 and 2. The modified com-
plementary energy expression (23) is, in tensor form,

g 0.a°

aB aff
Fpog = 1im ‘/P d/‘ € do - JF € do, dA -
mo E<0 af “aB o aﬁaﬁ)

R—>
j; R(TG - Ta,0>u¢ ds (a1)

where T, denotes the traction on Cgr, uy 1is the displacement vector,

and the superscript o denotes the elastic solution. Introducing the
notations Ggg = Oug - ”hBO’ Uy = uy - u,®, and Ty =Ty - T,° leads to

Fmod.= lim f

f cﬂﬁ °+5‘aB
R—>w> 'AR

O'GBO

(EGBE + eaBP)deB daA - f(mﬁa(u@o + ad.)d.s

where

Ga,BE = %':(l + V)Ogg - W’)"YBGB:I
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and
P_3(r_1 L
“ap " 2(Es E)(UOLB 3 778m13)
Now L
O -
0., +0
af Tab E 1 ~
fc S €0 dUcLB = ﬁ[(l + v)oCJLB O = Ygq O'BB] +
l - - - -
= (1 + V)GGBUG,B - Ww’GB'{' (a2)
But

1 O~ o- - o
E'[(l + v)ccr,B UGB - vo_ UBB:I = 0yp%aB

and, by the principle of virtual work,

- o - 0
L Utx.B c-:CLB da = j; Tq,uu, ds
R R

UG:BO+BQ,B P 1 L L
j; o €48 dca,B + ﬁ[(l + V)GOLBU@B - WG@UBB] da -

fcR Ea'a ds (a3)
Now

----—=2(- -1 3 (_;--_--)
(1 + v)chLBcrO[”3 v3.Opp = 5 UGBUQB 3 Uaa.UBB) +{v-3 O'QBO’CLB %88
The first of these two terms is precisely (ore)z, as defined by equa-

Ua,B P

tion (2), and the quantity f € dca,B is wP, as defined immediately

0]
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after equation (24). Hence, equation (A3) is the tensor equivalent of
equation (24), with the additional term

V - é‘ AR _ -
I /;R _EE—(GGBUOLB - °aa°ﬁB)dA ' (ak)

It remains only to show that this term vanishes to establish the validity
of equation (24).

In terms of the stress function o,

8B=cp

.

P

B -
277 af saf

where, as 1s usual in tensor notation, commas denote differentiation.

Then
I\

R(?aﬁaaﬁ - aamUBB)dA =L/;R6p”mﬁ¢,aﬁ - m,aa?;ﬁﬁ)dA

=L/;RIKP:QB¢,G>,B - <¢:aa9:5),é] aA (85)

Now since aaB provides zero resultant stress at all interior boundaries,
P @ is a single-valued function (see ref. 3, p. 191); hence, Green's

J
theorem can be applied to the area integral (A5), with the result that it
equals the line integral

IR =fr (q’,asq’,on - q’,acﬂ’,ﬁ)na ds

vwhere the line TI' includes both the circle Cr and the internal bound-
aries, and np is the exterior unit normal to T. But
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=)

L cp;@(q),a,ﬁ - Q)yy&aﬁ)nB ds

4

= - JC1 CP’a'caﬁnB ds

- L/; Q’a$a ds

Since T, vanishes at internal boundaries,

Ip = - CP'J:.‘a‘dS
Cr <

But since OB by assumption, dies out at infinity as 1/52 or faster,
it follows that

lim
R—>x

0]

Thus, 1t is established that the expression (Alt) 1is zero and, therefore,
the simplified form of F 4 given by equation (24) is equivalent to
equation (23).
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APPENDIX B

EVAIUATION OF TWO LINE INTEGRALS

The term
n px/2 = T
- lim 2N g-l-'-(l + 3 cos 29)— 3(ar_e> sin 26 ia ae (B1)
p—o % Jo 1 1 1

appearing in the expression (29) for ¢ is readily evaluated. From equa-
tions (34) which give the stresses in terms of the coefficient apq 1in

the stress function, it is seen that

The quantity (Bl) is therefore

n/2
Al 5
—ih o [(8‘00 + lta.o]_ cos 29)(1 + 3 cos 26) - 6a01(sin 20) ]de =
n .
3\
55~ (200 * 2201)
n/2
The evaluation of the integral f 1(0,0)d® is a little more
0]

involved. From equation (29),

n+l
n/2

n+l o 5
x/2 ° % \°
6 e. 6 e € L
8)d8 = 1im ——\5=) - o) |3 ®
»/(; 10,01 1—0v0 7(n + 1) Gl) T(n + l)<61 ) (ol) TP
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- -2
Since the correction stresses GGB are O(q?), then o, 1is O(ﬁu) and

therefore the last term in the integrand maskes no contribution in the limit
85 1 approaches zero. The first two terme in the integrand can be
expanded into

ntl
2 2

2
6 (ar°+ Er> . <09°+ 39)2_ (ur°+ 6r>(09°+ Ee) N 3/‘Ir1-eo+ -'rre\2 - (2;3)2 L [%°) _
T(n + 1) o1 %1 91 o1 \ 9/ 91 oy
o ¢] TOQT 6 groa 0-02 o'roo'o 'rc’2 o'roa'
-] | -t (- T ) T - £

o+l

() -6 - ) o) - [ 6 - D)

Now, terms of the order Eaﬁz will make no contribution to the integral

a8 1 —> 0 because qlB is 0(n2). Hence, using the binomial expansion
formula leads to

n/2 /2 | o\2 0\2
f 1(0,6)d8 = lim 6 (n + 1) or ) + <EQ..) -
0 —oJo T+ 1)\ 2 9 9
-1

) o] BE)E) - o)E) -
() - (@)E) - o))y

As n —> 0, the first bracketed quantity in the integrand approaches

2
SEOR
91 GV
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Thus,

n/2 /2 n-1 o\ /= oN/- o\ /=
f 1(0,8)d36 = lim fﬂ A 2(&)(&) + 2(@_ °_9> - ("_1‘_)(29) -
0 1—0Y0 T 91 /\%1 o1 /\%1 01 /\%1

o5°\(c T Tro\| 1
o (_E + 6 (X8 <_£9 —_ 46
% \%1 WA A RY

Now U@Bo is 0(1); furthermore, terms in the stress function containing

8pq lead to terms in the correction stresses of the order np+2. Hence,

consideration need be limited only to p = 0 and 1. Furthermore, GaBO

has only terms that are either independent of 0, or contaln cos 28 or
sin 20. Hence, by the orthogonality properties of these trigonometric
functions in the range (O,ﬁ/2), only values of q = O and 1 provide non-
vanishing results for the integrals of products of the elastic stress and
the correction stresses. Thus, no matter how many coefficients apq 8re

taken into account, only a850s &01s 210 and &aj7 can possibly contrib-

ute to the integral belng evaluated. Using the approprilate parts of equa-
tions (34) for UaBo and @ma: and legitimately ignoring terms of the

order nu or higher in their products, yields

x/f2 12 2D 3 3
f 1(0,6)d8 = lim 3N aoo(’ ’1_) - 310(32“) N

. a01(6q2 cos® 20 - 6n2 sin® 20 + 21113 cos® 20 -

3 1

sin;2 26) — 4o
n5

3 2 _2L3 2
2kn” sin 29) + 8y, (- U cos 20 + 127

Integrating with respect to © and then letting n —> 0 gives

n/2 Ny
_ N[ Boo , ®10 3 3 )
fo 1(0,8)48 = 7( TR T oLt gen
3N
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APPENDIX C
DESCRIPTION OF NUMERICAT MINIMIZATION PROCEDURE

The numerical minimization procedure used was essentially the same
as that used in reference 8 in the solution of a different plasticity
problem; much of the ensuing description parallels that contained in
appendix C of reference 8, but is included herein for the sake of com-
pleteness of the present report.

The so-called steepest-descent procedure (see, for example, refs. 9
and 10) which formed the basis of the numerical minimization may be
described in general terms as follows: Consider a function Q(xl,xz,...xn).

The set of n independent parameters may be conveniently denoted by the

n-component vector Xy (i=1, 2, 3, .. .n). The value of Xy that

minimizes ¢ 18 sought. An initial trial vector xi(o) is assumed, and

the gradient of ¢, that is, g¢ , 18 calculated at xi(o). The direc-
X1 .

tion - L is then the direction of steepest descent of the function o;

X1
the function ¢l%i(0) - Sggl- is then evaluated for various positive

%y
values of & in an effort to find the value & +that minimizes

o) xi(o) - EggL . Vhen this value of & is found (presumably, approxi-
X
1

mately), a new direction of steepest descent is determined by evaluation
of the gradilent of ¢ at the point x (1) = xi(o) - 5§EL X (0) . The
i axi i

process is continued until satisfactory convergence is obtained to the
lowest possible value of ¢. ’

In the present problem, the function ¢ 1s given by equation (33),
and the four coefficilents 800r 801> 810, 8nd a,; play the role of

the components of the vector X4 - The basic procedure outlined was mod-

ified in several respects. The evaluation of the gradient of & was
actually performed on the basis of a finite-difference approximstion to
each of the four partial derivatives required. Also, the value of & 1in
any given cycle was found as the minimum point of a parabola through the

% .
three points d(x1)> ¢(;i - 5§§;>’ and ¢(fi - 26%%;) where ® was

chosen to be of some convenient magnitude, preferably of the order expected
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for 8. The procedure was further modified by inserting after each two
successive cycles of minimization, in the direction of the negative
gradient, a third cycle of a different nature. In this extra cycle,
minimization was performed in the direction determined by the difference
between the last-obtained approximations to the unknowns and the approxi-
mations of two cycles before. The motivation for this extra cycle stems
from the fact that the unmodified method of steepest descent often tends
to furnish successive approximations to the minimizing vector that zigzag
toward the true minimum; the extra cycle was en attempt to speed up con-
vergence by moving in the direction determined by the mean of a zig and

a zag.

The procedure outlined was coded for calculation on SEAC; once values
of n, A, and initial estimates for the coefficients 85q were put Into

the machine, the iteration process proceeded automatically. Successive
approximations to the minimizing coefficients were printed; the number of
cycles of iteration performed varied from 12 to 35. In each case, the
final results agreed with those of several preceding iterations to within
approximately 1 percent of the largest coefficient. Although the nature
of the numerical procedure is such that the accuracy of the final results
can not be positively assessed, some confidence in their accuracy is lent
by the smooth variations with A obtained for the stress concentration

factor.
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TABIE I

COEFFICIENTS a’pq; ANATYTICAL SOLUTION, =n =3

NACA TN 3542

A 200 201 810
0.2 -0.00011 0.00458 0.00991

) .00521 .ol .09033

T .01868 . 0927k .16796
1.0 .05330 17346 .28840
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COEFFICIENTS 8pqs NUMERIGAL, SOLUTION

TABIE I1

A 800 801 a10 a1y
n=3%

0.2 0.0103 0.0146 -0.0027 -0.0109
A .0079 .0152 L0455 L0224}
T L0304 .0688 457 Olh5

1.0 L0666 .1551 . 2666 .0338

n=>5

0.2 0.0013 0.000k4 0.001% 0.0017
A .0015 .0052 .05k2 .Ol36
.7 .0703 221 .1986 L0632
.9 1572 .2808 .2883 -.0230

1.1 .2287 4489 1013 -.1364

n=9

0.3 -0.001k4 -0.0018 0.0082 0.0102
5 -.0154 -.0006 L4337 .1159
T 1131 712 2401 L0764
.9 .3349 .5130 .2548 -.1866

1.1 L1928 .8190 2871 -.4256

n = 19

0.4 -0.0116 -0.0158 0.0543 0.06T72
5 -.0286 ~-.0271 .1556 L1647
T L1617 .1895 .2610 .0993

1.0 640 1.1120 -.0240 -.60%9
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Figure l.- Circuler hole in an infinite plate subjected to uniaxial
tension.
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Figure 3.- Variation of stress concentration factor with o,/ 0y .
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n=3
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—— Numerical solution (4 coefficients)
——-— Analytical solution (3 coefficients)

Stowell's formula
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Figure 4.- Comparison of calculated stress concentration factors with
those given by Stowell's formula.
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—— Present solution
--~- Stowell's formula
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Figure 5.- Comparison of meximum hole stress predicted by Stowell's formula
and the present solution.



